Modeling Knowledge Management with Machine Learning in Koot Amir Water Treatment Plant: An Approach to Improve Performance and Water Quality (Case Study)

Document Type : Research Paper

Authors

1 . Department of Knowledge and Information Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Department of Knowledge and Information Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Department Civil Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

10.22059/jlib.2025.391697.1774

Abstract

Objective: In recent years, optimal operation of water treatment plants has faced numerous challenges, including fluctuations in water quality, rising operational costs, and the need for rapid and intelligent decision-making. In this context, the use of advanced knowledge management technologies, data mining, and artificial intelligence has emerged as powerful tools for optimizing operational processes. This study aims to evaluate the impact of machine learning algorithms on optimizing the performance of the Koot Amir water treatment plant in Ahvaz, with an emphasis on the role of knowledge management.
Method: This applied research adopts a data-driven approach. The study population comprises 40,000 records of real operational and qualitative data collected over five years from the Koot Amir treatment plant. After collection, the data underwent preprocessing and normalization and were divided into training (70%) and testing (30%) datasets. Three machine learning models—Artificial Neural Network (ANN), Random Forest (RF), and Support Vector Machine (SVM)—were evaluated for predicting water quality and optimizing chemical usage. Data analysis and modeling were performed using Python, SPSS, and Excel.
Results: The evaluation results revealed that the Artificial Neural Network model achieved the highest performance, with 94.7% accuracy and a determination index of 0.91 in predicting water quality changes. The Random Forest model also demonstrated strong capabilities, with 92.1% accuracy and a determination index of 0.88, effectively identifying complex water quality patterns. The Support Vector Machine model showed lower performance, with 89.3% accuracy and higher error rates. Implementing knowledge management using these models facilitated improved prediction of effluent water quality and enhanced the transfer of operational knowledge to plant operators.
Conclusions: This study demonstrates that integrating knowledge management with machine learning is an effective strategy for optimizing the performance of water treatment plants and can serve as a model for similar facilities. The adoption of advanced technologies holds significant potential for improving predictive capabilities and knowledge transfer in data-driven organizations.

Keywords


آبگون، علی؛ ابراهیمی، کیومرث؛ و حیدری، منصوره (1403). بررسی وقایع آسیب‌زای رودخانه تالار با ارائه‌ یک چارچوب پیشنهادی. علوم ومهندسی آبخیزداری ایران، 18(66)، 73-87. http://jwmsei.ir/article-1-1139-fa.html
بهرام‌نیا، محمد، و دریکوند، احسان (1397). ارائه مدلی برای ارزیابی کیفیت عملکردی تصفیه خانه های آب. آب و فاضلاب، 29(3)، 99-114.  
جمالی‌فر، ‌سیدعمار (1400). بررسی مدل‌های مدیریت دانش و استخراج یک مدل جامع (مقاله مروری). پژوهش‌های نوین در مدیریت کارآفرینی و توسعه کسب‌وکار، 5(2)، 326-346.
سلماسی، سمانه؛ سهرابی، روح‌الله؛ رهبر، امیرحسین؛ و محمدی، حیدر (1399). مطالعه امکان‌سنجی کسب‌وکار نوپا تفکیک از مبدأ و جمع‌آوری پسماند جامد شهری قابل بازیافت با استفاده از فناوری دیجیتال: مطالعه موردی شهر همدان. اقتصاد شهری، 5(2)، 135-148.
کلامی، عبدالحکیم؛ مهرانی، هرمز؛ سعیدی، پرویز، و عباسی، ابراهیم (1401). شناسایی و تحلیل عوامل مؤثر بر بازاریابی اجتماعی در حوزه صنعت آب و فاضلاب کشور. آب و توسعه پایدار، 9(1)، 53-60.
قصوری، علی (1401). بررسی جایگاه مدیریت دانش در تحقق اهداف سازمان. چشم انداز حسابداری و مدیریت، 5(57)، 146-153.
یوسفیان، الهه؛ فقیهی، ابوالحسن، و دانشفرد، کرم‌الله، (1400). طراحی الگوی خط‌مشی منسجم حکمرانی آب در ایران. علوم مدیریت ایران، 16(64)، 1-32.
محرابی، نازیلا، خراشادی‌زاده، سحر و کریمیان، راحله (1402). شناسایی مؤلفه‌های هوش مصنوعی در پیاده‌سازی مدیریت دانش. علوم و فنون مدیریت اطلاعات، 9(3)، 351-390.‎
Alikhani, M. R. and Moeini, R. (2023). Genetic Programming Method in Urban Water Consumption Prediction (Case Study: Najafabad City). Journal of Water and Sustainable Development, 10(3), 87-98. https://jwsd.um.ac.ir/article_44745.html?lang=en . (in Persian)
Amini, G., Farmani Entezam, H., Jan Sadeqpour, A., Davoodabadi, A. (2018). Identification and extraction of water consumption patterns using data mining method (case study of Qom Water and Wastewater Company). The Second Iranian Congress of Water and Wastewater Science and Engineering, Isfahan, Iran. https://civilica.com/doc/855951 . (in Persian)
Anna, N. E. V., & Mannan, E. F. (2020). Big data adoption in academic libraries: A literature review. Library Hi Tech News, 37(4), 1-5. https://doi.org/10.1108/LHTN-11-2019-0079
Arora, S. (2023). Data mining vs. machine learning: The key difference. Available at https://www.cprime.com/resources/blog/data-mining-vs-machine-learning-key-differences-you-should-know/
Avand, M. T. , Janizadeh, S. and Farzin, M. (2019). Groundwater Potential Determination on Yasouj-Sisakht area Using Random Forest and Generalized Linear Statistical Models. Journal of Range and Watershed Managment, 72(3), 609-623. https://jrwm.ut.ac.ir/article_74595.html?lang=en
Awdaa, A. A., & Alabbas, S. A. A. Presenting an interactive marketing model with a customer knowledge management approach in the tourism industry.
Barkdoll, B., Pakdehi, M., Ardestani, M., & Niksokhan, M. H. (2022). Using adaptive hierarchical process for excess chlorine risk assessment in a water distribution network: A case study. Available at https://doi.org/10.2139/ssrn.4214331
Cechinel, M. A. P., Neves, J., Fuck, J. V. R., de Andrade, R. C., Spogis, N., Riella, H. G., … Soares C. (2024). Enhancing wastewater treatment efficiency through machine learning-driven effluent quality prediction: A plant-level analysis. Journal of Water Process Engineering, 58, 104758 .
Cox, C., & Tzoc, E. (2023). ChatGPT: Implications for academic libraries. College and Research Libraries News, 84(3), 99. https://doi.org/10.5860/crln.84.3.99
da Silveira Barcellos, D., & de Souza, F. T. (2022). Optimization of water quality monitoring programs by data mining. Water Research, 221, 118805. https://doi.org/10.1016/j.watres.2022.118805
Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166, 114060. https://doi.org/10.1016/j.eswa.2020.114060
Doña, C., Chang, N.-B., Caselles, V., Sánchez, J. M., Camacho, A., Delegido, J., & Vannah, B. W. (2015). Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. Journal of Environmental Management, 151, 416-426. https://doi.org/10.1016/j.jenvman.2014.12.003
Fathabadi, H., Khanedan, R. (2014). Presenting a model for analyzing water consumption patterns using data mining, a case study of Mazandaran province, Sari county. Tarbiat Moalem University, Tehran. https://elmnet.ir/doc/10791100-10415 (in Persian)
Ferdowsizadeh, S., Noruzi, A., Ghanbarzadeh, M., & Zadnajaf, K. (2024). Application of long tail theory in digital bookstores. Library and Information Sciences, 27(2), 109-138. https://doi.org/10.30481/lis.2024.445273.2144 (in Persian)
Gayton, J. T. (2008). Academic libraries: “Social” or “communal?” The nature and future of academic libraries. Journal of Academic Librarianship, 34(1), 60-66. https://doi.org/10.1016/j.acalib.2007.11.011
Ghosoori, A. (2022). Investigating the position of knowledge management in achieving the goals of the organization. Journal of Accounting and Management Vision, 5(57), 146-153. https://www.jamv.ir/article_148651.html?lang=en (in Persian)
Hussein, E. E., Jat Baloch, M. Y., Nigar, A., Abualkhair, H. F., Aldawood, F. K., & Tageldin, E. (2023). Machine learning algorithms for predicting the water quality index. Water, 15(20), 3540. https://doi.org/10.3390/w15203540
Jayaraman, P., Nagarajan, K. K., Partheeban, P., & Krishnamurthy, V. (2024). Critical review on water quality analysis using IoT and machine learning models. International Journal of Information Management Data Insights, 4(1), 100210. https://doi.org/10.1016/j.jjimei.2023.100210
Jayaraman, P., Nagarajan, K. K., Partheeban, P., & Krishnamurthy, V. (2024). Critical review on water quality analysis using IoT and machine learning models. International Journal of Information Management Data Insights, 4(1), 100210. https://doi.org/10.1016/j.jjimei.2023.100210
Jeihouni, M., Toomanian, A., & Mansourian, A. (2020). Decision tree-based data mining and rule induction for identifying high quality groundwater zones to water supply management: A novel hybrid use of data mining and GIS. Water Resources Management, 34, 139-154. https://doi.org/10.1007/s11269-019-02447-w
Jenny, H., Alonso, E. G., Wang, Y., & Minguez, R. (2020). Using artificial intelligence for smart water management systems. Asian Development Bank. http://dx.doi.org/10.22617/BRF200191-2
Jenny, H., Alonso, E. G., Wang, Y., & Minguez, R. (2020). Using artificial intelligence for smart water management systems. Asian Development Bank. http://dx.doi.org/10.22617/BRF200191-2
Khoshravesh M, Hosseini Vardanjani SMR, Takkari Sudjani H, Ghhreman M. (2024). Evaluation of Groundwater Quality using the GQI Index for Drinking Purposes. J watershed manage res 15 (2) , 119-1 DOI: 10.61186/jwmr.15.2.1 . (in Persian)
Kolli, K., & Seshadri, R. (2013). Ground water quality assessment using data mining techniques. International Journal of Computer Applications, 76(15), 39-45. https://doi.org/10.5120/13324-0885
Lahve, R. (2023). Data mining and its applications for knowledge management: A literature review international. Journal of Computational Research in Engineering and Scienc, 1(1), 26-33.
Lin, H., Cui, J., & Bai, X. (2021). Feature extraction of marine water pollution based on data mining. Symmetry, 13(2), 355-368.‏ https://doi.org/10.3390/sym13020355
Lippincott, J. K. (2010). A mobile future for academic libraries. Reference Services Review, 38(2), 205-213. https://doi.org/10.1108/00907321011044981
Liu, L., & Liu, W. (2023). The engagement of academic libraries in open science: A systematic review. Journal of Academic Librarianship, 49(3), 102711. https://doi.org/10.1016/j.acalib.2023.102711
Mabona, A., Van Greunen, D., & Kevin, K. (2024, May). Integration of artificial intelligence (AI) in academic libraries: A systematic literature review. In 2024 IST-Africa Conference (IST-Africa) (pp. 1-9). IEEE. https://doi.org/10.23919/IST-Africa63983.2024.10569288
Malekian, A. , Razandi, Y. , Kalighi, S. and Farokhzadeh, B. (2016). Assessment of temporal and spatial changes of groundwater quality using hybrid Boolean, Fuzzy and Geostatistical (Case study: Varamin plain). Applied Field Crops Research, 29 (1), 126-135. https://aj.areeo.ac.ir/article_109571.html?lang=en . (in Persian)
Mohandsadeghi, S Al, Moghan, M., Alikhani, S. (2022). Investigating the position of data mining in the knowledge management process and presenting a conceptual model for knowledge extraction. Tomorrow's Management, 14(45), 69. https://www.magiran.com/paper/1552985 (in Persian)
Mondejar, M. E., Avtar, R., Diaz, H. L. B., Dubey, R. K., Esteban, J., Gómez-Morales, A., . . . & Prasad, K. A. (2021). Digitalization to achieve sustainable development goals: Steps towards a smart green planet. Science of The Total Environment, 794, 148539. https://doi.org/10.1016/j.scitotenv.2021.148539
Mozafari, A. , Ali Ahmadi, A. and Mozafari, A. (2022). Identification and Prediction of Consumption Behavior Using Decision Tree and Consumer Value Pyramid. Journal of Water and Wastewater; Ab va Fazilab (in persian) , 33 (2), 89-106. https://www.wwjournal.ir/article_153332.html?lang=en . (in Persian)
Naderian, D., Noori, R., Heggy, E., Bateni, S. M., Bhattarai, R., Nohegar, A., & Sharma, S. (2024). A water quality database for global lakes. Resources, Conservation and Recycling, 202, 107401. https://doi.org/10.1016/j.resconrec.2023.107401
Najafzadeh, M. and Lottfi-Dashbalagh, M. (2021). Application of Optimized Neuro-Fuzzy Models for Estimation of Water Quality Index in Karun River. Amirkabir Journal of Civil Engineering, 53(8), 3453-3466. https://ceej.aut.ac.ir/article_3942.html?lang=en . (in Persian)
Obiuto, N. C., Ninduwezuor-Ehiobu, N., Ani, E. C., Olu-lawal, K. A., & Ugwuanyi, E. D. (2024). Simulation-driven strategies for enhancing water treatment processes in chemical engineering: addressing environmental challenges. Engineering Science & Technology Journal, 5(3), 854-872.
Ponce Romero, J. M., Hallett, S. H., & Jude, S. (2017). Leveraging big data tools and technologies: addressing the challenges of the water quality sector. Sustainability, 9(12), 2160-2169. https://doi.org/10.3390/su9122160
Rana, R., & Bhambri, P. (2025). Ai-driven mcdm tools for optimizing industrial wastewater treatment. Modern SuperHyperSoft Computing Trends in Science and Technology, 61-106.
Razman, N., Wan Ismail, W., Abd Razak, M., Ismail, I., & Jamaludin, J. (2023). Design and analysis of water quality monitoring and filtration system for different types of water in Malaysia. International Journal of Environmental Science and Technology, 20(4), 3789-3800. https://doi.org/10.1007/s13762-022-04192-x
Rezania, N., Hasani Zonoozi , M., Saadatpour, M., (2021). Turbidity Removal from Water Using Graphene Oxide as Coagulant and Modeling with Artificial Neural Network, Journal of Environmental Sciences and Technology, 23(8), 1-17. https://sanad.iau.ir/Journal/jest/Article/838325 . (in Persian)
Rezvani GhalHari M, Ajami B, Ghoholdouei Milan E, Khalooi M, Mahvi a H. (2022). Evaluation of Groundwater Quality for Drinking Purposes in Kashan Using Water Quality indicators. Ijhe 14 (4) :615-6. URL: http://ijhe.tums.ac.ir/article-1-6559-fa.html . (in Persian)
Sabzalian, R., Noruzi, A., & Nazari, M. (2021). Study of customer journey map in electronic bookshops. Academic Librarianship and Information Research, 55(4), 1-25. https://doi.org/10.22059/jlib.2022.340459.1599 (in Persian)
Schniederjans, D. G., Curado, C., & Khalajhedayati, M. (2020). Supply chain digitisation trends: An integration of knowledge management. International Journal of Production Economics , 220 , 107439 https://doi.org/10.1016/j.ijpe.2019.07.012
Shal, T., Ghamrawi, N., & Naccache, H. (2024). Leadership styles and AI acceptance in academic libraries in higher education. Journal of Academic Librarianship, 50(2), 102849. https://doi.org/10.1016/j.acalib.2024.102849
Shams, M. Y., Elshewey, A. M., El-Kenawy, E. S. M., Ibrahim, A., Talaat, F. M., & Tarek, Z. (2024). Water quality prediction using machine learning models based on grid search method. Multimedia Tools and Applications, 83(12), 35307-35334. https://doi.org/10.1007/s11042-023-16737-4
Soleimanpour S, Mesbah S, Hedayati B. (2018). Application of CART decision tree data mining to determine the most effective drinking water quality factors (case study: Kazeroon plain, Fars province). ijhe. 11 (1) :1-14. URL: http://ijhe.tums.ac.ir/article-1-5881-fa.html . (in Persian)
Talebian, M., Ahmadifar, H R., Mirroshandel, S A., Shakeri, M., (2019). Forecasting water consumption using data mining techniques. Third International Conference on Soft Computing, Rudsar. https://civilica.com/doc/1006133 . (in Persian)
Villarín, M. C., & Merel, S. (2020). Paradigm shifts and current challenges in wastewater management. Journal of hazardous materials, 390, 122139.
Yang, G. (2019). Marine water quality monitoring and management system model based on data mining. Journal of Coastal Research, 94(SI), 11-15. https://doi.org/10.2112/SI94-003.1
Zhang, J., Sheng, Y., Chen, W., Lin, H., Sun, G., & Guo, P. (2021). Design and analysis of a water quality monitoring data service platform. Computers, Materials and Continua, 66(01), 389-405. https://doi.org/10.32604/cmc.2020.012384