مقایسه اثربخشی سامانه‌های پیشنهاددهنده مقاله های مرتبط در پایگاه های وب آو ساینس و گوگل اسکالر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی علم اطلاعات و دانش‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه شیراز، شیراز، ایران

2 دانشیار، گروه علم اطلاعات و دانش‌شناسی، دانشگاه شیراز، شیراز، ایران

چکیده

هدف: سامانه های پیشنهاددهنده منابع علمی با این هدف بوجود آمدند تا به کاربر منابعی را پیشنهاد دهند که به نیاز اطلاعاتی او نزدیک است. هدف اصلی پژوهش حاضر، مقایسۀ میزان اثربخشی سامانه های پیشنهاددهنده مقاله های مرتبط در پایگاه‌های وب‌آو‌ساینس و گوگل‌اسکالر در چهار حوزه موضوعی از دیدگاه کاربران است.
روش: پژوهش حاضر از نظر هدف کاربردی و از حیث روش، توصیفی از نوع مقایسه‌ای است. نمونه پژوهش به دو گروه نمونه انسانی و مقالات تقسیم می‌شود. نمونه انسانی شامل 120 نفر از دانشجویان مقطع دکتری بود. این افراد از ۴ حوزۀ موضوعی علوم انسانی، علوم پایه، فنی-مهندسی و کشاورزی و دامپزشکی بودند و از هر حوزه ۳۰ نفر. نمونه مقالات، 2400 مقاله مرتبط متشکل از 1200 مقالۀ مرتبط پیشنهاد شده در هر یک از دو پایگاه بود. داده‌های این پژوهش توسط دو ابزار پرسشنامه و نرم‌افزار شبیه سازی محیط پایگاه‌ها گردآوری شد.
نتایج: یافته‌ها نشان داد از دید کاربران، سامانه پیشنهادهنده پایگاه‌های وب‌آوساینس و گوگل اسکالر در پیشنهاد مقاله‌های مرتبط اثربخش عمل نموده است، همچنین، بین اثربخشی مقاله‌های مرتبط در چهار حوزۀ تفاوت معنا دار وجود داشت و هر دو پایگاه در حوزۀ موضوعی علوم انسانی نسبت به سایر حوزه‌ها، کمترین تعداد مقاله‌های مرتبط و بیشترین تعداد مقاله‌های نامرتبط را به کاربران بپیشنهاد داده بودند.
اصالت: علی‌رغم اهمیت سامانه های پیشنهادهنده مقاله ها، پژوهشی که اثربخشی سامانه های پیشنهاد دهنده مقالات مرتبط در پایگاه وب‌آوساینس و گوگل اسکالر را از دیدگاه کاربران مورد بررسی قرار داده باشد، مشاهده نشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparing the effectiveness of related articles recommender systems in Web of Science and Google Scholar

نویسندگان [English]

  • Saba Sasein 1
  • Javad Abbaspour 2
1 Department of Knowledge and Information Science, Shiraz University, Shiraz, Iran
2 Associate Professor, Department of Knowledge and Information Science, Shiraz University, Shiraz, Iran
چکیده [English]

Aim: Scientific recommender systems have been developed to provide users with resources that are close to their information needs. The main objective of the present study was to compare the effectiveness of the related articles recommender systems in Google Scholar and Web of Science databases from the users’ perspectives.
Methods: This is an applied research with comparative approach. The samples included both human and paper ones. The human samples consisted of 120 Ph.D. candidates at Shiraz University. From among each field, thirty students (i.e., totally 120 students) participated in the study. The paper samples consisted of 2,400 related papers, 1200 of which were retrieved from Google Scholar, and 1,200 of which were retrieved from Web of Science database. The data were collected by a questionnaire and software.
Results: The results showed that users considered both Google Scholar and Web of Science databases as effective in retrieving the related articles. There were significant differences between each of the four areas of humanities, basic sciences, engineering, agriculture and veterinary science in terms of the effectiveness of the related articles function. In addition, both databases represented the least number of related articles and the largest number of unrelated articles in the area of humanities.
Originality: Despite the importance of related articles recommender systems, there was no evidence that measures the effectiveness of related articles recommender systems in Web of Science and Google Scholar.

کلیدواژه‌ها [English]

  • user-oriented Relevance
  • Effectiveness
  • Related articles recommender systems
آتشکار، م، علی‌پورحافظی، م، و نوروزی، ی. (۱۳۹۲). شناسایی میزان آشنایی دانشجویان تحصیلات تکمیلی با پایگاه‌های گوگل اسکالر. فصلنامه نظام ها و خدمات اطلاعاتی، ۹(۱)، ۶۱-۷۸.
 اخوتی، م. (۱۳۸۳). مفهوم ربط در نظام‌های بازیابی اطلاعات: مروری بر نظریه‌ها و ادبیات موجود. اطلاع شناسی، ۵، ۲۳-۴۶.
 
 Bar-Ilan, J. (2008). Which h-index?—A comparison of WoS, Scopus and Google Scholar. Scientometrics74(2), 257-271.
Bar-Ilan, J. (2010). Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics82(3), 495-506.
Bollacker, K. D., Lawrence, S., & Giles, C. L. (1998). CiteSeer : An Autonomous Web Agent for Automatic Retrieval and Identification of Interesting Publications.  In Proceedings of the 2nd International Conference on Autonomous Agents (pp. 116–123). http://doi.org/10.1145/280765.280786.
Char, D. C., & Ajiferuke, I. (2013, October). Comparison of the effectiveness of related functions in Web of Science and Scopus. In Proceedings of the Annual Conference of CAIS/Actes du congrès annuel de l'ACSI.
Dicheva, D., & Dichev, C. (2011, October). Can collective use help for searching?. In Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2011 International Conference on (pp. 24-31). IEEE.
Dumais, S. T., & Schmitt, D. G. (1991, September). Iterative searching in an online database. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 35, No. 5, pp. 398-402). SAGE Publications.
 Haddaway, N. R., Collins, A. M., Coughlin, D., & Kirk, S. (2015). The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PloS one10(9), e0138237.
 Jansen, B. J., Spink, A., & Saracevic, T. (2000). Real life, real users, and real needs: a study and analysis of user queries on the web. Information processing & management36(2), 207-227.
Joachims, T., Granka, L., Pan, B., Hembrooke, H., & Gay, G. (2005, August). Accurately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 154-161). Acm.
Jacsó, P. (2008). Google scholar revisited. Online information review32(1), 102-114.
Kinley, K., Tjondronegoro, D., Partridge, H., & Edwards, S. (2014). Modeling users' web search behavior and their cognitive styles. Journal of the Association for Information Science and Technology65(6), 1107-1123.
Kousha, K., & Thelwall, M. (2008). Sources of Google Scholar citations outside the Science Citation Index: A comparison between four science disciplines. Scientometrics, 74(2), 273-294.
Kyvik, S. (1988). INTERNATIONALITY OF THE SOCIAL-SCIENCES-THE NORWEGIAN CASE. International Social Science Journal40(1), 163-172.
 Lin, J., & Smucker, M. D. (2008, July). How do users find things with pubmed?: towards automatic utility evaluation with user simulations. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 19-26). ACM.
Lin, J., & Wilbur, W. J. (2007). PubMed related articles: a probabilistic topic-based model for content similarity. BMC bioinformatics8(1), 1.
Lin, J., DiCuccio, M., Grigoryan, V., & Wilbur, W. J. (2007). Exploring the effectiveness of related article search in PubMed. LAMP-TR-145/CS-TR-4877/UMIACS-TR-2007-36, Univ. of Maryland, College Park.
Lin, J., DiCuccio, M., Grigoryan, V., & Wilbur, W. J. (2008). Navigating information spaces: A case study of related article search in Pubmed. Information Processing & Management44(5), 1771-1783.
 Mingers, J., & Lipitakis, E. A. (2010). Counting the citations: a comparison of Web of Science and Google Scholar in the field of business and management. Scientometrics85(2), 613-625.
 Nederhof, A. J. (2006). Bibliometric monitoring of research performance in the social sciences and the humanities: A review. Scientometrics66(1), 81-100.
 Schoepflin, U. (1992). Problems of representativity in the social sciences citation index. In Representations of science and technology (pp. 177-188). DSWO Press.
Smucker, M. D. (2008). Evaluation of find-similar with simulation and network analysis (Doctoral dissertation, University of Massachusetts Amherst).
Smucker, M.D. &  Allan,J. (2006).Find-Similar: Similarity Browsing as a Search Tool. In SIGIR’06, August 6–11, 2006, Seattle, Washington, USA.
Spink, A., Jansen, B. J., & Cenk Ozmultu, H. (2000). Use of query reformulation and relevance feedback by Excite users. Internet research10(4), 317-328.
Yang, K., & Meho, L. I. (2006). Citation analysis: a comparison of Google Scholar, Scopus, and Web of Science. Proceedings of the American Society for Information Science and Technology43(1), 1-15.